University of California San Diego

Rady School of Management

Mark Zuidema Penn State University Mechanical Option

Faculty Advisor: Dr. Stephen Treado

Building Information

Location: La Jolla, Ca

Size: 4 Stories, 101,000 SF

Cost: \$35.3 Million

Delivery Method: Design-Bid-Build

Construction Dates: September 2005 - February 2007

Existing Mechanical System

Typical VAV System

Fan Coil Uni

3 Rooftop AHUs -

Designed to Consume 38% Less Energy Than Stipulated in ASHRAE 90.1

Free of CFCs and HCFCs

Served by the University's Central Utility Plant

Chilled Water System

Water Supplied by CUP at 42 deg. F 445 GPM Primary Pump

Hot Water System

Water Supplied by CUP at 350 deg. F 145 GPM Primary Pump Bell & Gossett Shell-Tube Hx Building Served at 180 deg. F

First Cost

Mob/Demob (0.6%)

Submittals (2.8%)

Equipment/Material (35.2%)

Installation (47.2%)

Start Up (1.2%) Controls Submittals (1.3%) Controls Materials (6.5%)

Controls Instillation (4.9%) Controls Start Up (0.3%)

Building Loads

	Coolin	g		
Load (j	ft²/ton)		812	
Supply	Air (CFM/ft²)		1.47	
Ventila	ation Air (CFM/ft ²)		0.67	
The state of the s				- marine
	Heating	Load		Sat with the man
Desig	gn (ft²/ton)	5	78.3	
TIN			S IN THE	THERE STALL
	Annual Energy Use	e (kBTU/ft²*yr)	B. S.	a grant - Bull.
	Space Cooling	26.49	and the second second	
	Space Heating	18.92	and the second	and the second
	Fans	13.73		- ALICES
	Heat Rejection	13.01		
	Pumps	2.76		
	TOTAL	74.91		
	TOTAL	74.91		

Utility Rates & Consumption

Utility	Rates
Electricity	\$.08/kWh
Chilled Water	\$6/MBTU
Hot Water	\$11.5/MBTU
Domestic Water	\$5.7/100 ft ³

Annual Operating Cost

Electricity (41.1%) Chilled Water (15.1%) Hot Water (19.6%) Domestic Water (24.2%) TOTAL TOTAL \$50,266.80 \$18,456.00 \$23,943.00 <u>\$29,560.20</u> \$122,226.00 \$1.91

Monthly Utility Cost Breakdown

Mechanical Redesign Objectives

Reduce Operational Costs

Maintain a Reasonable First Cost

Maintain or Increase Thermal Comfort Level

Increase Indoor Air Quality

Mechanical Redesign

Incorporate an Active Chilled Beam System Create a Dedicated Outdoor Air System

Will Energy Savings Offset First Costs?

Outdoor Air Design Conditions

Indoor Design Conditions

Set Points

Space Dry Bulb Temp. Space Relative Humidity Space Humidity Ratio Space Dew Point Temp. ACB Surface Temp.

50% 74.35 gr/lb 58.8°F 63°F

79°F

Supply Air Conditions

Wsa=Wsp-Q/(0.68Vsa)

40 gr/lb of dry air

45 Deg. F

.08Vsa(AT

AT = 34 Deg. F

ACB Cooling Capacity: 2,162 BTU

Required # of ACBs: 1,396

Pumping Requirements for ACBs

-00

Ing

,500 GPM

8,200 Ft. of Head

THEFT

<u>Heating:</u> 1,200 GPM 1,120 Ft. of Head

Cooling Coil Load

Area B&C: 141.3 Tons

Area A: 77.4 Tons

 $Q = 0.06 \rho Vsa(\Delta F)$

Reheat Requirement: .116 MBH

Heating Requirements

Mean ACB Temperature: 95 Deg. F

Inlet Temperature: 97 Deg. F

Outlet Temperature: 93 Deg. F.

Heating Coil Requirement: 5.7 MBH

Air Flow Requirements

Required Airflow (CFM)

Original Design Redesign % Difference 94,270 36,191

61.60%

2

Reduction of VAV Units

Savings on VAV Units						
	<u>Old</u>	<u>New</u>	<u>Cost/Unit</u>	<u>Total Savings</u>		
A	0	55	\$762	(\$41,910)		
В	4	0	\$773	\$3,092		
С	15	0	\$773	\$11,595		
D	10	0	\$810	\$8,100		
Ε	1	0	\$810	\$810		
G	21	0	\$908	\$19 <i>,</i> 068		
Н	7	0	\$1,035	\$7,245		
J	1	0	\$1,119	\$1,119		
				\$9,119		

Fans and FCUs

<u>Savin</u>	gs or	FCUs		
<u># of Units</u>	<u>Cc</u>	ost/Unit	<u>Total Sa</u>	vings
1/2 ton	5	\$1,13	9 \$	5,695
12.5 tons	1	\$4,79	5 <mark>\$</mark>	<mark>4,795</mark>
			\$1	.0,490
Fai	n Sav	<u>vings</u>		LITERAL
		<u>Savin</u>	<u>gs</u>	- Aller
28,000 CFM, 20 I	hp		\$8,355	
	hp		\$10,725	
<mark>15,000 CFM, 10 l</mark>	hp _		<mark>(\$5,565)</mark>	
			<mark>\$13,515</mark>	

Pumping Requirements

Pump (Costs
--------	-------

of Units

15 HP, Centrifugal
5 HP Centrifugal
100 HP, Centrifugal

lotal C	<u>ost</u>
1	(\$9,930)
1	(\$7,425)
8	\$200,000
	\$182,645

	Added C	<u>Costs</u>
--	---------	--------------

	Equipment Type
	AHUs
13-1	VAV Boxes
-	FCUs
	Pumps
	Fans
mild."	ACBs

Cost (\$56,000) (\$9,119) (\$10,490) \$182,645 (\$13,515) \$558,400 **\$651,921**

Energy Use

Annual Energy Ose (KDIO// JI)	<u>Annual E</u>	Energy L	<u>Jse (kE</u>	3TU/j	<u>ft²*yr)</u>
-------------------------------	-----------------	----------	----------------	-------	----------------

	<u>Old</u>	<u>New</u>
Space Cooling	26.49	22.78
Space Heating	18.92	12.87
Fans	13.73	8.24
Pumps	2.76	10.93
TOTAL	61.9	54.81

The Proposed Design Results in an Estimated 11.4% Reduction in Energy Consumption

Energy Cost Savings

Energy Cost

Old

New

Difference

\$92,666 \$82,056 **\$10,610**

The Proposed Design Results in an Estimated Payback Period of 61 Years

Conclusion

More Energy Efficient

12

Higher Indoor Air Quality

Easy Maintenance

Possible Increase in Thermal Comfort Level

Operating Costs Do Not Offset First Costs Enough

NOT AN ECONOMICALLY VIABLE OPTION

Electrical Breadth

What Effect Would This System Have On The Electrical System?

Existing Equipment Connections							
<u>Equipment</u>	<u>HP</u>	<u>Volts</u>	<u>PH</u>	Fuse/Pole	<u>Source</u>	<u>Wire Size</u>	
AHU-1	50	480	3	150A/3P	4MCC/1,2,3	1.25"C - 3 #2 & 1 #6 GND	
RF-1	20	480	3	50A/3P	4MCC/10,11,12	3/4"C - 3 #10 & 1 #10 GND	
RF-2A	20	480	3	50A/3P	4MCC/13,14,15	3/4"C - 3 #10 & 1 #10 GND	
FCU-1	1/8	120	1	20A/1P	1EPB1/1	3/4"C - 3 #12 & 1 #12 GND	
FCU-2	1/12	120	1	20A/1P	1EPB1/3	3/4"C - 3 #12 & 1 #12 GND	
FCU-3	1/12	120	1	20A/1P	1EPB1/5	3/4"C - 3 #12 & 1 #12 GND	
FCU-4	1/12	120	1	20A/1P	1EPB1/2	3/4"C - 3 #12 & 1 #12 GND	
FCU-5	1/12	120	1	20A/1P	1EPB1/4	3/4"C - 3 #12 & 1 #12 GND	
FCU-7	2	480	1	20A/3P	1EHA/13,15,17	3/4"C - 3 #12 & 1 #12 GND	
CHWP-1	15	480	3	40A/3P	1MCC/1,2,3	1"C - 3 #8 & 1 #10 GND	
HWP-1	5	480	3	20A/3P	1MCC/10.11.12	3/4"C - 3 #12 & 1 #12 GND	

New Equipment Connections

New Equipment Connections						
<u>Equipment</u>	<u>HP</u>	<u>Volts</u>	<u>PH</u>	Fuse/Pole	<u>Source</u>	<u>Wire Size</u>
New RF-2A	10	480	3	40A/3P	4MCC/13,14,15	1"C - 3 #8 & 1 #10 GND
New CHWP-1	100	480	3	150A/3P	1MCC/1,2,3	1.25"C - 3 #2 & 1 #6 GND
New CHWP-2	100	480	3	150A/3P	1MCC/4,5,6	1.25"C - 3 #2 & 1 #6 GND
New CHWP-3	100	480	3	150A/3P	1MCC/7,8,9	1.25"C - 3 #2 & 1 #6 GND
New CHWP-4	100	480	3	150A/3P	1MCC/10,11,12	1.25"C - 3 #2 & 1 #6 GND
New CHWP-5	100	480	3	150A/3P	1MCC/13,14,15	1.25"C - 3 #2 & 1 #6 GND
New HWP-1	100	480	3	150A/3P	1MCC/16,17,18	1.25"C - 3 #2 & 1 #6 GND
New HWP-2	100	480	3	150A/3P	1MCC/19,20,21	1.25"C - 3 #2 & 1 #6 GND
New HWP-3	100	480	3	150A/3P	1MCC/22,23,24	1.25"C - 3 #2 & 1 #6 GND

Breaker Changes

5

3

1

2

1

<u>Old</u>

20A/1P 20A/3P 40A/3P 50A/3P 150A/3P

Total

-5

-3

-2

